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This paper will show how megalithic culture could study astronomy 
and make significant discoveries without modern numerical techniques 
or equipment. This should overcome the natural disbelief in megalithic 
capabilities whilst advancing a realistic itinerary to megalithic 
achievements. Through the counting of natural time periods, the 
measurement of synodic periods, the creation of a subtle metrology 
and the use of simple geometrical tools such as the right angled 
triangle, a discovery window on the sky was possible. This produced 
some unfamiliar results that are of interest today and Nature is shown 
to have nurtured early astronomers with the provision of the 19 year 
Metonic period and 18 year eclipse period, the Saros, just 12 lunations 
shorter than this. 

 
Introduction 
Astronomical observation begins with the observation of spatial organization of stars and 
planets, the moon largely by night and the sun by day. The organization of time can seem 
quite fascinating since the sky generates changes which run parallel with those of the 
terrestrial environment. It has been claimed that early scratches and notches on Stone Age 
bones and other artifacts could represent counting of the moon’s phases [MARSHAK]. The 
later megalithic culture was obviously able to count and so proof of this Stone Age capability 
any further back is not especially relevant. 

 
The Month’s Approximate Length 
Whilst not the accuracy of the actual measurement the half day excess over 29 days adds 
up to a whole day over two periods. Such good fortune means that some astronomical 
measurements could be achieved quite easily and these specifics need to be taken into 
account when assessing any Stone Age ability to progress to the Megalithic. To achieve 
greater accuracy for the month’s duration requires more sophisticated techniques but having 
a good figure brings early understandings and a subsequent search for greater accuracy, as 
will be seen. 

 

The Year’s Approximate Length 
The next achievable goal is to measure the length of the year, which is 365.242 days long. 
This is also, quite accurately, 365.25 days long, a quarter day longer than 365 whole days. 
The quarter day manifests in the fact that, on the horizon, the rising or setting sun on the 
same day of the year has four different positions on the horizon in four consecutive days. 
This fact enables a period of four years to be counted in days so that the sun will again 
appear to rise or set on the same distant horizon mark almost exactly. The count would be 
1461 days to give an accuracy over one part in 45,000 {1 in 45655}. However, the problem 
of keeping tally, that is of notating a long count must be considered in the next section. 

 

The Problem of Notating Long Counts 
It is a well established fact that cultures readily develop horizon calendars since the sun 
moves to north and south during the year. The width of such calendars, calibrated by 



features on a local horizon, grows in angular extent with increasing latitude from the tropics. 
It is also well demonstrated that megaliths were employed; both as central marker (from 
which observations are made), and also to provide long sightings to supplement natural 
features on the horizon.  

The keeping of such long counts would require techniques for the recording of large 
numbers. Inevitably, sophistication must grow from marks on bone to the use of knots, 
counters, the use of grouping patterns and so on. In later historical cultures these developed 
into representational symbols and now-familiar mathematical techniques including 
arithmetic, techniques that have proved crucial to modern scientific culture. Records of early 
arithmetic exist because of the parallel development of written records paralleling writing with 
numerical notation on clay, stone, leather and paper media. An alternative mechanism 
enabling megalithic astronomers to do calculation and measurement is required, since there 
is no evidence of megalithic notation. It seems more likely that abstract notation arose as the 
megalithic period was coming to an end and so, how could numbers be handled otherwise? 

One promising alternative is a development of metrology or system of measures. Every 
ruler and tape measure indicates numbers and a unit of measure can usefully subsume a 
wealth of fractional measures within it such as inches in a foot, eighths of an inch within that. 
A series of marks on a line or knots on a string are suggestive of numbers and indeed 
counting involves the notion of number. Counting is a natural precursor of metrology in which 
number notation is sublimated within an easily manipulated system of measures.  

Once measures arise there is a natural use for them within primitive geometrical 
methods.  

1. Measures can be subdivided into one another to achieve the division of one 
number by another.  

2. Larger numbers of a unit can be aggregated to indicate multiplication, such as 
with a fathom of six feet.  

3. Addition and subtraction are simply available through adding or removing a 
length.  

4. In many respects, the concept of measure demonstrates the power of gears and 
clockwork, themselves an oft-used and natural metaphor of cyclic time periods.  

5. There are psychological impacts too in that, knowing the relative frequency of 
astronomical periods allows for the notion of exact future and past celestial 
situations. 

This proposal, that metrology enabled Stone Age calculation, is supported by the fact 
that metrology is found to be a chief characteristics of megalithic building. Such 
constructions invariably employ measures that are precise and often astronomical in their 
specifics. The measures found in megalithic sites prove to be directly related to the later 
“historical” measures, described in later periods through writing.1

Metrological notation is a very similar technique to the aggregation found within our 
positional notation of numbers, in the use of miles, furlongs, fathoms, yards, cubits, feet, etc. 
Each larger unit consists of a known number of smaller ones that in turn contain known 
quantities of smaller units. Both horizon calendars and metrology are evident phenomena at 
megalithic sites.  

 

                                                
1 One clear indication is that all of our historical measures, whilst in use in various parts of the East and Europe, 
were clearly developed within a single interrelated system of measures: they are all related by way of integer 
ratios between them, ratios involving the first four or five prime numbers. The use of low prime numbers 
indicates that the originators of the system had appreciated the primary concern of metrology which is that of 
dividing one length by another. This commensurability of different lengths parallels exactly the problem posed 
by the division of one celestial period by another and it is likely that the need to relate celestial periods that 
would have been the initiating cause of this ancient metrology. 



 
Counting the Year’s Length, again 
To improve the accuracy in counting a year one can go through a series of natural steps. 

Step One: One can count the days between sunrise on the same point of the horizon to 
realize there are 365 days in a year. Playing with the count can reveal the characteristic that 
365 is 73 times 5. 

By establishing the 365 day year, one has a direct relationship to the 5:8 relationship of 
this year to the Venus synodic period of 584 days. There are five 73 day periods in the 365 
day year whilst the Venus synod is made up of eight 73-day periods making Venus and the 
solar year commensurate to considerable accuracy {one in 7300}. Venus is the brightest and 
most systematic planetary recurrence for the naked eye astronomer whose cycle has an 
evening star and then a morning star phase which repeats 5 times every eight years of 365 
days. 

 

 
 
Step Two: When engaged in this activity it becomes clear that the sun “creeps” ahead 

slightly between years. However every four years there is a sun again on the same horizon 
marker.  

 
Step Three: The visualization of 365 days, four times, plus an extra day, reveals the true 

length of the solar year as 365 plus a quarter day. 
 
There is therefore no need to count four years, and in any case how would you know that 

every four years the sun is accurately on the same marker? It is the observations 
themselves that develop what to do and “four positions on the horizon” gives the clue to what 
to measure and how to measure it: that is to say a phenomenological approach would 
indicate how best to proceed. The sun returns to the same marker after four years meaning 
one quarter of a day extra per year. 

Having achieved the improved 365.25 days as the year length, longer and more accurate 
measurements are available through observation of a 33 year period which yields a very 
respectable 365.2424 figure for the solar year as 365 plus 32/132 days.  

As with modern science, mechanisms for achieving higher accuracy open the door to 
new discoveries. In the megalithic world it would have been the lunar month that needed to 
be more accurately measured and the key to this proved to be nature’s provision of a moon 
whose orbit creates eclipses. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Importance of Eclipses 
This is expressed very well by E.G. Richards: 

“The mean synodic period [of the moon] may be measured by counting the days in a 
large number of lunations and taking an average. This is facilitated by the fact that the earth, 
moon and sun are exactly in line, during an eclipse. Thus, counting the number of days 
between eclipses and dividing the result by the number of new moons observed would give 
an accurate estimate of the average duration of the lunation or lunar month”2

An eclipse can be of two sorts.  
 

1. A solar eclipse, visually the most arresting, is a new moon that occurs when the 
moon, and hence the sun behind it, is sitting on one of the lunar orbital nodes 
where the sun’s path crosses that of the moon. The moon then stands between 
the sun and the earth and the shadow created touches a region of the earth. 
When the moon is lower in its orbit, this can completely mask the solar disk, but 
only for a very limited region of the earth’s surface. This makes solar eclipses 
quite exceptional as observations and also, quite unpredictable to megalithic 
astronomers. 

2. A lunar eclipse places the Earth between a full moon and the sun, again with 
these bodies sitting on lunar nodes but one on each of the lunar nodes rather 
than the same one. The shadow of the earth is about three times wider than the 
extent of the moon and this causes regular eclipses to occur whenever the sun is 
near a lunar node since the moon, moving thirteen times fast, will pass through 
the other node during its orbit and be eclipsed when when full.  

Lunar eclipses are common and are also visible when they take place on the same side 
of the earth as an observer. Some might be missed during the day, especially when partial 
or “penumbral”, that is not fully within the earth shadow. Almost every six lunations an 
eclipse will occur and this allows counting between eclipses as these accurately mark an 
opposition between sun and moon and hence the exact moment of a full moon. 

As such counts were developed over many years, it would be noticed that there were 
either 6, 5 or 1 lunar months between them, or multiples of these (when eclipses were not 
observable or simply missed). A typical pattern is shown below, for 2002 to 2020. 

                                                
2 Mapping Time, the Calendar and its History by E.G. Richards, OUP, 1998 



 
 
The pattern is symmetrical because of an 18 year period called the Saros, whose chief 

characteristic is that an eclipse, solar or lunar, at any moment will recur in similar fashion 18 
years, eleven days and 8 hours later, because of the way the moon’s tilted orbit precesses. 
In any recurring cycle, what happens at the beginning is mirrored by what happens at the 
end and fortunately the 5 and 1 month eclipse gaps allow there to be a recognition, using 
symmetry, that the pattern of eclipses repeats.  

The Saros pattern of lunar eclipses is created by the fact that the sun meets a node 
every 173.31 days whilst six months add up to 177.18354 days. An eclipse at one node, 
opposite the sun, can only happen once after which the sun will have to move to the other 
node before a further eclipse can occur. However, six lunar months are four days longer 
than the time the sun will take to change node, and this leads to a gradual advance in where 
the two bodies will stand opposite each other again. 

If the six month period is going to overshoot the eclipse condition, a fifth month’s full 
moon will instead manifest an eclipse, usually generating a partial eclipse instead. If this 
happens early enough, the sixth month can also find a partial eclipse condition, leading to 
the occasional incidence of just one month between eclipses. If an eclipse occurs after just 
one month then a further 5 month gap will bring the moon and sun to the opposite nodes in 
suitable condition to being a further set of six, mainly total eclipses. 

Another benefit in viewing lunar eclipses arises when they occur at night for at that time 
the location of a lunar node can be determined relative to the familiar star constellations, 
specifically relative to the ecliptic and the sun’s yearly path.  After counting the eclipse 
periods, in lunations and in days, over 36 to 55 years it would become apparent that there 
was some sort of order in them, because of the gaps of 5 and just 1 month, that punctuate 
the series as the difference between six lunations and half an eclipse year is naturally 
adjusted for. 

When the Saros period is thereby resolved, a whole number of lunar months can be 
defined for its duration of 223 lunar months, made up from five sets of 6 month gaps, eight 5 
month gaps and just 3 1 month gaps; 180 + 40 + 3 = 223. 

Having reached such a point then not only would the duration of the lunar month have 
been accurately measured but also, a predictable schedule of expected eclipses would be 
available and the total length of the Saros would be known, the knowledge of which being 
passed down to later astronomers. 



Around 500 BCE a Babylonian called Naburinos published an estimate for the lunar 
month of 29.530614 days using the Saros period. The figure of 29.53058885 used today is 
little different showing the high degree of accuracy possible. There is no reason to think that 
such accuracy was not possible in prehistory using long counts of days and the counting of 
lunar months in between eclipses.  Sufficient accuracy is probably just one hundredth of a 
day’s length, because 29.5300 is only one part in 50,000 different from the actual figure, 
relaxing the accuracy required for long counts between the many Saros eclipses 

It is easy to establish that there are twelve lunar months in the year which we call the 
lunar year. Nearly eleven days difference exists between the lunar and solar years. This 
extra part of a month is nearly a third meaning that in three years there are 36 plus one lunar 
months, i.e. 37.3

 

 This initial approximation of 12 and one third months in a year can be 
improved on through conducting long counts between Saros eclipses. 

The Importance of Right Angled Triangles 
To achieve more accuracy in the relation of the month to the year, attention must focus on 
this excess of the solar over the lunar year. Having developed an accurate measure for the 
lunar year then metrology can represent the count for the lunar year as a length that can be 
superimposed upon the day count of the solar year as a length.  

The number of months in a year is then 12.36855 months, in modern positional notation 
not available during the megalithic. Instead, this could have been expressed by employing 
the properties of right angled triangles and megalithic metrology which is naturally suited to 
defining and measuring the side lengths of such triangles. If the year is established in day 
lengths, as a baseline, then it is possible to measure, as lengths, the twelve months of the 
lunar year from one end. This then leaves the excess of the solar over the lunar year, 
exposed as a length which can be measured in days. 

 

The question then arises: how does the excess compare with the month?4 By dividing 
the excess length into the month length, two whole excesses leave just less than ¾ of the 
excess but more than 5/8ths or 2/3rds of it. Logically, to find a closer division invites us to try 
5/7ths and to do this a method to obtain sevenths of a unit of measure has to be available.5

                                                
3 This relation has been noted by Robin Heath as the median diameter of the Sarsen Circle of Stonehenge which 
is 37.10 megalithic yards. 

  

4 We can preempt the discussion by noting that the lunar excess is, in days, closely 10.875 which as a fraction is 
87/8 days whilst the month as 29.5 days is 236/8. The 236/87 = 2.713 which is close to 19/7 to one part in 1652 
and this, it turns out, is the very accurate whole number relation to be found here. 
5 Such simple fractions are to be preferred before advancing to division by larger numbers, partly because the 
simplest ratios, where possible, are the most representative. 



 
Metrology and triangular geometry make this possible because the interdivision of 

numbers within measures can be achieved by creating a base and hypotenuse in the same 
unit. If the base is seven units and the hypotenuse eight units as in the above figure, then 
the base divisions, at points directly above each division, divide up the hypotenuse in seven 
parts because of the proportionality between the two lengths. Seven feet on the base would 
generate seven royal feet of 8/7 feet in an 8 foot hypotenuse, causing the required 1/7th of a 
foot to emerge on the hypotenuse between the first foot and the one seventh division 
projected upwards from the base of seven feet. 

The month as a length would then be revealed as being 2 and 5/7th units in terms of the 
lunar excess per year or 19/7 to a high accuracy. The excess is then revealed as being the 
inverse or 7/19th of a month which is 0.368 of it. The month can then be seen as 19 units 
long and the excess as 7 units long. The required unit is known as the megalithic yard 
identified as being about 19/7 English feet long.6

 

 The lunar year of 12 months is added as 12 
times 19 over 19 or 228/19 and the metrological result is a year seen in units of length as 
235/19 feet or 12.368 megalithic yards equivalent to 12.368 months per year. 

The Importance of Nineteen 
Something extraordinary is revealed: that in 19 years the sun, moon and stars return to the 
same relative configuration within 19 years. This period was known to Greek astronomers as 
the Metonic period but it is far less obvious than the Saros period because the Saros 
announces itself in spectacular form with eclipses whilst the Metonic period  requires a more 
attentive noticing, that the lunar phase and its starry backdrop are identical to how they were 
nineteen years ago. It therefore seems most likely that numerical counting to determine 
accurately the lengths of solar year and lunar month revealed the existence of the Metonic 
period.  

Once the Metonic period of 19 years is known, then a lunar eclipse at any (suitable) 
moment will ensure a full moon (and similar lunar eclipse) after the Saros period of eighteen 
years and, further, a full moon, if not an eclipse, at the end of the Metonic period of nineteen 
years. Should counts have been established to accurately predict eclipses, it would soon 
become clear that there were exactly twelve lunar months between the ending of the Saros 
and the ending of the Metonic, relative to the starting point. That is, an exact lunar year 
separates the Saros from the end of the 19 year Metonic; for 235 – 223 = 12. 

                                                
6 The term English foot refers to its location in historical times as being in use in England. 



 
 
The triangle above can be constructed to represent this, the last year of any Metonic 

period. It recapitulates the aforementioned activity that leads to establishing the excess of 
the solar over the lunar year based upon 7/19. This triangle illustrates the end of the 
Metonic, it’s last year, very clearly. It is unavoidable that the phase of the moon at the end of 
the Saros and Metonic periods will be same as its initial phase and it is surprising that a full 
lunar year should lie between them and even more unlikely that the moon should have a 
synodic return with the sun exactly on the nineteenth anniversary. Heed must be given to 
what is a fortunate circumstance for an astronomy using counting and hence for megalithic 
achievements.. 

For the Saros to happen, a lunar node has to have reached a position, twelve lunar 
months before the Metonic. In fact it takes just less than 18.618 years for the nodes to 
retrograde fully around the ecliptic and as the nodes return to their starting position for a 
given Saros, the sun meets with the node responsible for an initial eclipse as it has nearly 
completed one orbit, 11 days and 8 hours into the 19th year of solar motion. 

We have already established that lunar eclipses happen whenever the sun, moon and 
nodes are aligned, during eclipse seasons that last many days, if the sun is crossing a node 
and the moon goes through either one of its nodes. These nodal points came to be called 
dragon points because of the idea that sun or moon could be swallowed in some way.  

Because the nodes retrograde and the sun defines forward motion in the sky, a node 
and the sun meet again in less than a year, a type of year called the eclipse year (of 346.62 
days). Because there are two nodes there are two eclipse seasons in a year, each marking 
the minimum time possible between two eclipses.  

Since prehistoric people counted eclipses, this behavior and these seasons could be 
inferred despite the fact that the nodes themselves cannot be seen. Because of the 
occasional nature of suitable eclipse conditions, it is very easy to deduce that the number of 
eclipse years in the Saros has to be exactly 19 eclipse years.  

At this point, there is a very significant structure to time appearing, that after 19 eclipse 
years there is a lunar year before the end of 19 solar years. As happened with the solar year 
and the lunar month, it is inevitable that the movement of the nodes themselves would 
become a subject deserving accurate measurements. The counting of days between 
eclipses yields a known and accurate number of lunations in between. Even though eclipses 
are sporadic, the common unit (of half an eclipse year) would soon become clear and known 
using the time of day for an observable eclipse to estimate within at least 1/8th of a day. In 



fact, determining the length of the eclipse year is the complementary aspect of measuring 
the length of the lunar month from eclipses. 

Once the length of the eclipse year is established to this accuracy, then the same 
technique used above for the lunar excess can be applied to establishing how much shorter 
the eclipse year is than the solar year. This figure is about 18 days and 5/8th of a day which 
is 149/8 days. The eclipse year is about 346 and 5/8th days which plus 18 and 5/8th days 
equals a 365 and 1/5th day solar year which is slightly short of 365.2424 days.  

Constructing a triangle for the eclipse and solar year reveals something extraordinary if 
the triangle is normalized according to the unit of difference between the two years. To do 
this the unit (in this case, the excess of  18.625 days) is divided into both the base and the 
hypotenuse leaving the difference as “one”, the unit within which the triangle is now 
calibrated. 

 

 
 
The result would be a triangle with a hypotenuse 19.625 long and base 18.625 or 

thereabouts. Of immediate interest would be the fact that the eclipse year divided by the unit 
of 18.625 yields 18.625, meaning that the eclipse year, in days, is the square of the unit 
whilst also being the “one” that makes the solar year 19.625 rather than 18.625.  

These figures could have been improved upon so that they would approach the true 
figure of 18.618 days as the natural unit of the normalized triangle. For the eclipse year to be 
the square of the difference between the years, the unit involved must be slightly smaller and 
is found to be slightly less than 18.618. 

The mysterious nature of this triangle emerges from the fact that the moon’s nodes move 
one DAY in angle during 18.618 days or 18.618 DAYS of solar motion. This DAY in angular 
motion is the earth rotation required to catch up with the sun so as to begin every day at the 
same solar time on earth.7

                                                
7 It is important to note that DAYS of angle are the natural units for a people who count astronomical periods 
whilst the later degree system is natural for a people who measure angles directly using equipment that can be 
calibrated. The use of 360 degrees obfuscates the natural structure of time measure in the same way that using 
the non-native metre measure obfuscates the numerical content of megalithic sites. 

 The whole Metonic period can be summarized with these two 

 



triangles, the 18.618/19.618 at the start showing the Node day relationship in the year and 
the 12:12.368 triangle at the end to see the last lunar year that separate the Saros and 
Metonic completions, as below. 

 

 
Some simple number relations then emerge. The lunar excess is, as shown, closely 7/19 

whilst this new length of 18.618 days is 12/19 of the lunar month and also 12/7 of the lunar 
runon. Both these new relations are useful but inaccurate in the opposite sense { one in 
750}.  

This carries great meaning with regard to historically received measures. If one 
developed a base measure and subdivided it into seven parts, then 19/7, that is nineteen 
such parts, this would make a measure that then, naturally, operates to enable the lunar 
excess and the lunar month to co-habit in the right hand triangle. Moving on to the unit 
18.618, which can usefully be called the Node Day, then in the same context it can be 
shown with a unit 12/7.  

These two values are found in historical measures as the royal cubit of 12/7 feet and the 
Drusian step (of 2.5 Drusian feet) whose value is close to 19/7 (being 19.008/7) and is within 
the range of measures found for the “megalithic yard” by Thom and verified since at various 
sites. The 7/7th of a foot is the English foot itself, which appears to have been the root unit for 
a developed metrological system around which fractional variations were created (such as 
the Drusian foot of 27/25 feet). It has been found recently that almost all of the known 
historical length measures were based of the English foot with the implication that metrology 
was originally developed in pre-history. The applicability of megalithic measures to their 
astronomical activities whilst being present within megalithic constructions fairly confirms 
such a lineage for metrology and points, in the absence of other evidence, to the innovation 
of metrology in the megalithic. 

 
The Importance of Geometrical Symbolism 
With regard to the Node Day of 18.618 which manifests in the (18.618)2 eclipse year and 
18.618 year nodal orbital period, the 18.618:19.618 triangle has been discovered8

                                                
8 Robin Heath, Sun, Moon and Earth pp 54-55, Walker, NY, 1999. 

 within the 
Type B flattened circles built by megalithic peoples in Britain and Brittany. The radius of the 
non-flattened semicircle can be taken to be 18.618 units long whereupon the central vesica 
construction has a half width that then defines a hypotenuse of 19.618. The “eclipse triangle” 
is therefore available through the Type B construction, demonstrating (a) that the triangle 
was likely known by the builders and that (b) through geometrical flattening of a circle, an 
origin for such a triangle was found by them, in pure geometrical terms. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The same story of geometric discovery is true of the 12:12.368 lunation triangle, whose 

third side is three units. The Station Stone rectangle is 12 units by 5 units in size and if the 5 
side is divided at the 3:2 point then an intermediate hypotenuse forms this “lunation triangle”. 
Meanwhile, the diagonals of the Station Stone rectangle are 13 units long and form the 
second Pythagorean triangle having 12:13:5 side lengths. Since the Station Stone rectangle 
is 96 by 40 megalithic yards, then the twelve side is already available in units of 8 megalithic 
yards and these yards are closely 19/7 feet long.  

 
 

 
 
 
 
 
 
 
Also at Stonehenge I and around the Station Stones is an out-scribed circle, the Aubrey 

Holes within which the Station Stone rectangle was constructed9

This has been shown to be capable of operating a sidereal clock in which the sun, moon 
and lunar nodes are moved according to a simple schedule based upon the moon. The ring 
represents the ecliptic and the nodal positions can be progressed based on the movements 
of the moon so that, alignments of sun and moon with the nodes can be identified directly 
and even predicted through an artificial advancement in the schedule of movement. 

.  

                                                
9 Illustration From John Wood’s Sun, Moon and Standing Stones OUP 1978. See also the original work On 
Stonehenge by Fred Hoyle. For further development of this idea see  Sun, Moon and Stonehenge by Robin 
Heath, Bluestone , 1998 



 
Conclusions 
It has therefore been found that accurate geometrical constructions, the Type B flattened 
circle and the Station Stone rectangle, contain frameworks for building the two triangles that 
best characterize the Saros/Metonic periods of 19 eclipse and solar years. The primary unit 
of length measure used in megalithic times to build these structures, the megalithic yard, is 
found to exhibit exactly the ratio required to map in lengths, within such triangles, the ratio of 
the lunar month to the excess of the solar over the lunar year which is 7/19 lunations. By 
using a 19/7 foot “yard”, the excess becomes the root measure, the English foot by 
cancellation. 

There can be little doubt therefore that metrology applied to geometry enabled the 
counting of celestial periods to be transformed into an exact science without the mediation of 
later numerical techniques. This science would of necessity have been literalistic since it was 
not able to abstract numerical measures but could only translate them, from time counting 
into length measures. However, the right angled triangle enabled equivalents to 
multiplication and division so that the system of fractional measures could contain all manner 
of divisions and aggregations based on different prime number bases. Problems of relative 
length could be solved geometrically or through simple division of a given measure by 
different units of measure so as to discover common units, that is to find these 
commensurate and rational with respect to each other. 

The problems in accepting the full range of astronomical capabilities demonstrated in 
megalithic monuments and their alignments has been the absence of an itinerary to explain 
how Neolithic peoples could have developed such sophistication. The reporting of concrete 



proofs of achievement has caused those reporting them to be accused of proposing an 
anachronistic flowering of abstract mathematics in prehistory. Meanwhile, the proposal that 
an ancient metrology existed as a precursor to historical metrology similarly presents hard to 
accept assumptions.  

This is a Neolithic itinerary whereby the Megalithic could achieve what it did without later 
mathematical methods. The hypothesis requires an evolution of metrology so as to notate 
counting, develop counts as accurate lengths, find differences between astronomical periods 
and develop geometrical techniques to identify numerical relationships between these 
periods. This requirement then fits with the evidence within monuments and their geometries 
containing exactly the right measures and system of metrology. 
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